Tag Archives: fiber attenuator

What are Fiber Optic Attenuators

Fiber optic attenuators are used in applications where the optical signal is too strong and needs to be reduced. For example, in a multi-wavelength fiber optic system, you need to equalize the optical channel strength so that all the channels have similar power levels. This means to reduce stronger channels’ powers to match lower power channels.

The attenuation level is fixed at 5 dB, which means it reduces the optical power by 5dB. This attenuator has a short piece of fiber with metal ion doping that provides the specified attenuation.

There are many different mechanisms to reduce the optical power, this picture shows another mechanism used in one type of variable attenuator. Here variable means the attenuation level can be adjusted, for example, it could be from 1 dB up to 20dB.

Fiber optic attenuators are usually used in two scenarios.

The first case is in fiber optic power level testing. Attenuators are used to temporarily add a calibrated amount of signal loss in order to test the power level margins in a fiber optic communication system.

In the second case, attenuators are permanently installed in a fiber optic communication link to properly match transmitter and receiver optical signal levels.

Optical attenuators are typically classified as fixed or variable attenuators.

Fixed attenuators have a fixed optical power reduction number, such as 1dB, 5dB, 10dB, etc.

Variable attenuators’ attenuation level can be adjusted, such as from 0.5 dB to 20dB, or even 50dB. Some variable attenuators have very fine resolution, such as 0.1dB, or even 0.01dB.

This slide shows many different optical attenuator designs.

The female to female fixed attenuators work like a regular adapter. But instead of minimizing insertion loss, it purposely adds some attenuation.

The female to female variable attenuators are adjustable by turning a nut in the middle. The nut adjusts the air gap in the middle to achieve different attenuation levels.

The male to female fixed attenuators work as fiber connectors, you can just plug in your existing fiber connector to its female side.

The in-line patch cable type variable attenuators work as regular patch cables, but your can adjust its attenuation level by turning the screw.

For precise testing purposes, engineers have also designed instrument type variable attenuators. These instrument type attenuators have high attenuation ranges, such as from 0.5 dB to 70dB. They also have very fine resolution, such as 0.01dB. This is critical for accurate testing.

Source: fiber optic cable manufacturer

The Different Types of Fiber Optic Attenuators

LC/PC Fixed Fiber optic attenuator

LC/PC Fixed Fiber optic attenuator

Fiber optic attenuator is used in the fiber optic communications to reduce the optical fiber power at a certain level, the most commonly used type is female to male plug type fiber optic attenuator, it has the optical fiber connector at one side and the other side is a female type fiber optic adapter, fiber optic attenuator name is based on the connector type and the attenuation level.

There are two functional types of fiber attenuators: plug style (including bulkhead) and in-line.

A plug style attenuator is employed as a male-female connector where attenuation occurs inside the device, that is, on the light path from one ferrule to another. These include FC fiber optic attenuator, LC attenuator, SC attenuator, ST attenuator and more.

An in-line attenuator is connected to a transmission fiber by splicing its two pigtails.

The principle of operation of attenuators are markedly different because they use various phenomena to decrease the power of the propagating light. The simplest means is to bend a fiber. Coil a patch cable several times around a pencil while measuring the attenuation with a power meter, then tape this coil. Then you got a primitive but working attenuator.

Most attenuators have fixed values that are specified in decibels (dB). They are called fiber optic fixed attenuator. For example, a -3dB attenuator should reduce intensity of the output by 3dB.

Manufacturers use various types of light-absorbing material to achieve well-controlled and stable attenuation. For example, a fiber doped with a transition metal that absorbs light in a predictable way and disperses absorbed energy as a heat.

Variable fiber optic attenuators also are available, but they usually are precision instruments used in making measurements.

Jfiberoptic offers many high quality Fiber Optic Attenuators, including FC,LC,ST Fiber Attenuators, both single mode and multimode.

Source: Jfiberoptic.com

Types of Fiber Optical Attenuator

Two types of fiber optic attenuators:

1. fixed value attenuators
2. variable optical attenuators.

Fixed value attenuators have fixed values that are specified by decibels. Their applications include telecommunication networks, optical fiber test facility, Lan(LAN) and CATV systems. For instance, a -3dB attenuator should reduce concentration of the output by 3 dB(50%). Fixed value attenuator’s attenuation value can’t be varied. The attenuation is expressed in dB. The operating wavelength for optical attenuators ought to be specified for that rated attenuation, because optical attenuation of a material varies with wavelength. Fixed value attenuators are comprised of two big groups: In-line type and connector type. In-line type appears like an ordinary fiber patch cable; it has a fiber cable terminated with two connectors which you’ll specify types. Connector type attenuator looks like a bulk head fiber connector, it has a male end and a female end. It mates to regular connectors of the identical type for example FC, ST, SC and LC.

Variable fiber optical attenuators come with a variety of designs. They’re general used for testing and measurement, but they also possess a wide usage in EDFAs for equalizing the sunshine power among different channels. One type of variable optical attenuator is made on the D-shaped fiber as a type of evanescent field device. If your bulk external material, whose refractive index is larger compared to mode effective index, replaces a part of the evanescent field reachable cladding, the mode can become leaky plus some from the optical power could be radiated. If the index from the external material could be changed with a controllable mean, with the effects for example thermo-optic, electro-optic, or acoustic-optic, a device with controllable attenuation is achievable.

What is Fiber Optic Attenuator

A fiber optic attenuator, also called an optical attenuator, simulates losing the could be caused by a long period of fiber. Typically, this device performs receiver testing. While an optical attenuator can simulate the optical loss of an extended period of fiber, it can’t accurately simulate the dispersion that would be caused by a long length of fiber.

Put it simply, for a fiber optic receiver, too much light can overload it and degrade the bit error ratio. In order to achieve the best bit error ratio (BER), the light power should be reduced. Fiber optic attenuators fit the requirement perfectly. This could happen when the transmitter delivers too much power for example once the transmitter is simply too near to the receiver.

Fiber optic attenuators are like your sunglasses, which absorbs the extra light energy and protect your eyes from being dazzled. Attenuators normally have a working wavelength range in which they absorb the sunshine energy equally.

An essential characteristic of a good fiber attenuator is that they should not reflect the light, instead, they should absorb the extra light without being damaged. Because the light power used in fiber optic communications are fairly low, they usually could be absorbed without noticeable damage to the attenuator itself.

Types of Optical Attenuators

Two types of fiber optic attenuators exist: fixed value attenuators and variable optical attenuators.

Fixed value attenuators have fixed values that are specified by decibels. Their applications include telecommunication networks, optical fiber test facility, Lan(LAN) and CATV systems. For instance, a -3dB attenuator should reduce concentration of the output by 3 dB(50%). Fixed value attenuator’s attenuation value can’t be varied. The attenuation is expressed in dB. The operating wavelength for optical attenuators ought to be specified for that rated attenuation, because optical attenuation of a material varies with wavelength. Fixed value attenuators are comprised of two big groups: In-line type and connector type. In-line type appears like an ordinary fiber patch cable; it has a fiber cable terminated with two connectors which you’ll specify types. Connector type attenuator looks like a bulk head fiber connector, it has a male end and a female end. It mates to regular connectors of the identical type for example FC, ST, SC and LC.

Variable optical attenuators come with a variety of designs. They’re general used for testing and measurement, but they also possess a wide usage in EDFAs for equalizing the sunshine power among different channels. One type of variable optical attenuator is made on the D-shaped fiber as a type of evanescent field device. If your bulk external material, whose refractive index is larger compared to mode effective index, replaces a part of the evanescent field reachable cladding, the mode can become leaky plus some from the optical power could be radiated. If the index from the external material could be changed with a controllable mean, with the effects for example thermo-optic, electro-optic, or acoustic-optic, a device with controllable attenuation is achievable.

Source: http://www.jfiberoptic.com