Tag Archives: fiber

What are Fiber Optic Patch Cables

Fiber optic patch cable, often called fiber optic patch cord or fiber jumper cable, is a fiber optic cable terminated with fiber optic connectors on both ends. It has two major application areas: computer work station to outlet and fiber optic patch panels or optical cross connect distribution center. Fiber optic patch cables are for indoor applications only.

Types of fiber optic patch cables
Fiber optic patch cables can be divided into different types based on fiber cable mode, cable structure, connector types, connector polishing types and cable sizes.

Fiber optic patch Cable Mode:

1. Single mode fiber patch cables:  Single mode fiber optic patch cables use 9/125 micron bulk single mode fiber cable and single mode fiber optic connectors at both ends. Single mode fiber optic cable jacket color is usually yellow. Here is the explanation of what is single mode and single mode fiber.

2. Multimode fiber patch cables: Multimode fiber optic patch cables use 62.5/125 micron or 50/125 micron bulk multimode fiber cable and terminated with multimode fiber optic connectors at both ends.  Multimode fiber optic cable jacket color is usually orange. Here is the explanation of what is multimode and multimode fiber.

3. 10gig multimode fiber optic patch cables:  10Gig multimode fibers are specially designed 50/125 micron fiber optimized for 850nm VCSEL laser based 10Gig Ethernet. They are backward compatible with existing network equipment and provide close to three times the bandwidth of traditional 62.5/125 multimode fibers. 10 Gigabit is rated for distances up to 300 meters using 850nm Vertical Cavity Surface Emitting Lasers (VCSEL). 10Gig fiber optic cable jacket is usually aqua.

Fiber patch Cable Structure:

1. Simplex fiber optic patch cables: Simplex fiber patch cable has one fiber and one connector on each end.

2. Duplex fiber optic patch cables: Duplex fiber patch cable has two fibers and two connectors on each end. Each fiber is marked “A” or “B” or different colored connector boots are used to mark polarity.

3. Ribbon fan-out cable assembly: For ribbon fan-out cable assembly, one end is ribbon fiber with multi fibers and one ribbon fiber connector such as MTP connector (12 fibers), the other end is multi simplex fiber cables with connectors such as ST, SC, LC, etc.

Source: fiber optic cable manufacturer

What Is Fiber Optical Connectors

Fiber optic connectors, detachable (active) device connected between the fiber and the fiber, the two fiber end face precision docking up to launch the optical output of light energy to maximize the coupling to the receiving fiber,and because of its involvement in the optical link system impact be minimized, which is the basic requirements for fiber optic connectors. To a certain extent, fiber optic connectors affect the reliability and the performance of optical transmission systems.

Fiber Optic Connector is an important components used in the fiber optic network. It is also the key part used in fiber optic patch cord and fiber optic pigtail. There are many kinds of fiber optic connectors.we supply one piece fiber optic connectors various types, including standard connectors and irregular types, epoxy types. And fiber optic types include: SC fiber optic connector, FC fiber optic connector, ST fiber optic connector,LC fiber optic connector,MU fiber optic connector, SC/APC fiber optic connector, FC/APC fiber optic connector, etc. both Single mode fiber optic connector and multimode fiber optic connector available.

There are Single mode fiber optic connector and Multimode fiber optic connector, Single mode fiber optic connectors can be with PC, or UPC or APC polish, while Multimode fiber optic connectors only with PC or UPC polish. PC or UPC or APC refer to how we polish the ferrule of the fiber optic connectors. Judging from the out looking, Multimode connectors are usually with black boot or beige color, Single mode PC and UPC ones are usually with blue or black color, Single mode APC is with green color. Insertion loss is important technical data of the fiber optic connectors. The smaller the better. APC insertion loss is smaller than UPC, UPC is smaller than PC.

Fiber optical connectors are used to join optical fibers where a connect/disconnect capability is required. There are many types of connectors, the commonly types are LC, SC, FC, ST, MU, E2000.

LC is Lucent Connect or Little Connector or Local Connector. Its ferrule diameter is 1.25mm based on standard of IEC 61754-20. They are often found on small form-factor pluggable transceivers.

SC is Subscriber Connector or square connector or standard connector. Its ferrule diameter is 2.5mm and based on the standard of IEC 61754-4. SC connectors offer excellent packing density and their push-pull design reduces the chance of fiber end face contact damage during connection; frequently found on the previous generation of corporate networking gear, using GBICs.

FC long form is ferrule connector or fiber channel. FC connector has same ferrule diameter as SC but standard (IEC-61754-13). FC connectors need to be mated more carefully than the push-pull types due to the need to align the key, and due to the risk of scratching the fiber end face while inserting the ferrule into the jack. FC connectors have been replaced in many applications by SC and LC connectors.

ST long form is straight tip. The ferrule diameter is 2.5mm and according to standard IEC 61754-2. ST has a key which prevents rotation of the ceramic ferrule, and a bayonet lock similar to a BNC shell.

MU (Miniature unit Coupling) connector is the SC connector is currently the most used based on the developed world’s smallest single-core optical fiber connector, developed by NTT.

More source of fiber optic connectors, please visit at http://www.jfiberoptic.com

Fbt Coupler Fiber Optic Patch Cables And Dwdm Sfp Transceiver

Fiber optic splitter is used to split the fiber optic light into several parts at a certain ratio. We use fiber optic splitter to distribute or combine optical signals in many applications, such as FTTH solution, etc. Fiber optic splitters are important passive components used in FTTX networks. Fiber optic splitters can be terminated with different kinds of connectors, the main package could be box type or stainless tube type, one is usually used with 2mm or 3mm outer diameter cable, the other is usually used with 0.9mm outer diameter cables.

Two kinds of fiber splitters are popular used, one is the traditional fused type fiber optic splitter (FBT coupler), which features competitive prices; the other is PLC fiber optic splitter, which is compact size and suit for density applications. Both of them have its advantages to suit for different requirement. FBT Couplers are designed for power splitting and tapping telecommunication equipment, CATV networks, and test equipment. These components are available individually or integrated into modules for fiber protection switching, MUX/DMUX, optical channel monitoring, and add/drop multiplexing applications.

Major differences between PLC splitters and FBT Coupler

1. Technology behind FBT Coupler and PLC splitter.
FBT coupler: Fused Biconical Taper, this is traditional technology to weld several fiber together from side of the fiber.
PLC splitter: Planar Lightwave Circuit is a micro-optical components product, the use of lithography, the semiconductor substrate in the medium or the formation of optical waveguide, to achieve
branch distribution function.

2. Disadvantages and advantages between FBT and PLC.
PLC splitter FBT coupler
SpliSplit Ratio (Max) 1*64 splits 1*4 splits
EveEveness Can split light evenly Eveness is not very precise
SizeSizeSize Compact size Big size for multi splits

Fiber Patch Cable also known as fiber jumper or fiber patch cord, which is a fiber optic cable terminated with fiber optic connectors on both ends. There are two major application areas of Fiber
Patch Cable: computer work station to outlet and fiber optic patch panels or optical cross connect distribution center. Fiber optic patch cables are for indoor applications only. Single-mode fiber
Patch cable is primarily used for applications involving extensive distances. Multimode fiber optic patch cord, however, is the cable of choice for most common local fiber systems as the devices for multimode are far cheaper.

Jfiberoptic Dense Wavelength Division Multiplexing (DWDM) Small Form-Factor Pluggable (SFP) is available in all 100 GHz C-band wavelengths on the DWDM ITU grid. They are designed to Multi-Source Agreement (MSA) standards to ensure broad network equipment compatibility. As multirate interfaces they support any protocol from 100 Mbps to 4.25 Gbps. DWDM SFP transceivers provide the high speeds and physical compactness that today’s networks require while delivering the deployment flexibility and inventory control that network administrators demand. The 1.25G DWDM SFP transceivers are small form factor pluggable modules for bi-directional serial optical data communications such as 4x/2x/1x Fibre Channel, SDH/SONET, Ethernet applications. We supply 1.25G DWDM SFP modules are hot pluggable and digital diagnostic functions area vailable via an I2C serial bus specified in the SFP MSA SFF-8472. The DWDM SFP transceiver has undergone rigorous qualification and certification testing to provide End-to-End Compatibility using switching equipment from CISCO, BROCADE, JUNIPER, ALCATEL, HP (select models), NORTEL, EMC, QLOGIC and other OEMs.

Fiber optic patch cord info from http://www.jfiberopt.com

What will happen if fiber cable is smaller than its minimum bend radius?

Bending a fiber cable over its MBR is one of the biggest factors in fiber damage in projects to install fiber cables. This practice can break the fibers inside or increase fiber attenuation (fiber power loss) than the manufacturer’s specifications. Although the internal fibers are already broken, you can not see any physical damage to the outer skin at all. As a result, you must replace the entire section or even the entire length of the cable. As a good practice, all fibers must be thoroughly tested after cable installation. More info from jiafu fiber optic cable manufacturer

Find more fiber optic products, like fiber optic cables, fiber optic patch cord, fiber optic patch panel, fiber optic test equipment, visit our website http://www.jfiberoptic.com.

 

About Optical fiber

An optical fiber (or optical fibre) is a flexible, transparent fiber made of glass (silica) or plastic, slightly thicker than a human hair. It can function as a waveguide, or “light pipe”, to transmit light between the two ends of the fiber. The field of applied science and engineering concerned with the design and application of optical fibers is known as fiber optics. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communication. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. Fibers are also used for illumination, and are wrapped in bundles so that they may be used to carry images, thus allowing viewing in confined spaces. Specially designed fibers are used for a variety of other applications, including sensors and fiber lasers.

Optical fibers typically include a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by total internal reflection. This causes the fiber to act as a waveguide. Fibers that support many propagation paths or transverse modes are called multi-mode fibers (MMF), while those that only support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter, and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft).

Joining lengths of optical fiber is more complex than joining electrical wire or cable. The ends of the fibers must be carefully cleaved, and then spliced together, either mechanically or by fusing them with heat. Special optical fiber connectors for removable connections are also available.

Types of Fiber Optical Attenuator

Two types of fiber optic attenuators:

1. fixed value attenuators
2. variable optical attenuators.

Fixed value attenuators have fixed values that are specified by decibels. Their applications include telecommunication networks, optical fiber test facility, Lan(LAN) and CATV systems. For instance, a -3dB attenuator should reduce concentration of the output by 3 dB(50%). Fixed value attenuator’s attenuation value can’t be varied. The attenuation is expressed in dB. The operating wavelength for optical attenuators ought to be specified for that rated attenuation, because optical attenuation of a material varies with wavelength. Fixed value attenuators are comprised of two big groups: In-line type and connector type. In-line type appears like an ordinary fiber patch cable; it has a fiber cable terminated with two connectors which you’ll specify types. Connector type attenuator looks like a bulk head fiber connector, it has a male end and a female end. It mates to regular connectors of the identical type for example FC, ST, SC and LC.

Variable fiber optical attenuators come with a variety of designs. They’re general used for testing and measurement, but they also possess a wide usage in EDFAs for equalizing the sunshine power among different channels. One type of variable optical attenuator is made on the D-shaped fiber as a type of evanescent field device. If your bulk external material, whose refractive index is larger compared to mode effective index, replaces a part of the evanescent field reachable cladding, the mode can become leaky plus some from the optical power could be radiated. If the index from the external material could be changed with a controllable mean, with the effects for example thermo-optic, electro-optic, or acoustic-optic, a device with controllable attenuation is achievable.

What is the difference between a single mode and multi mode fiber optic connector?

There are 2 major differences one color code. single mode will be white or yellow. multimode will be black or tan. 2nd the hole in the connector ferrel for the fiber. fiber is 125 microns. in a single mode connector the opening is 126 microns. multimode is 127/128.
Single Mode cable is a single strand (most applications use 2 fibers) of glass fiber with a diameter of 8.3 to 10 microns that has one mode of transmission. Single Mode Fiber with a relatively narrow diameter, through which only one mode will propagate typically 1310 or 1550nm. Carries higher bandwidth than multimode fiber, but requires a light source with a narrow spectral width. Synonyms mono-mode optical fiber, single-mode fiber, single-mode optical waveguide, uni-mode fiber.
Single Modem fiber is used in many applications where data is sent at multi-frequency (WDM Wave-Division-Multiplexing) so only one cable is needed – (single-mode on one single fiber)
Single-mode fiber gives you a higher transmission rate and up to 50 times more distance than multimode, but it also costs more. Single-mode fiber has a much smaller core than multimode. The small core and single light-wave virtually eliminate any distortion that could result from overlapping light pulses, providing the least signal attenuation and the highest transmission speeds of any fiber cable type.

Single-mode optical fiber is an optical fiber in which only the lowest order bound mode can propagate at the wavelength of interest typically 1300 to 1320nm.
Multi-Mode cable has a little bit bigger diameter, with a common diameters in the 50-to-100 micron range for the light carry component (in the US the most common size is 62.5um). Most applications in which Multi-mode fiber is used, 2 fibers are used (WDM is not normally used on multi-mode fiber). POF is a newer plastic-based cable which promises performance similar to glass cable on very short runs, but at a lower cost.
Multimode fiber gives you high bandwidth at high speeds (10 to 100MBS – Gigabit to 275m to 2km) over medium distances. Light waves are dispersed into numerous paths, or modes, as they travel through the cable’s core typically 850 or 1300nm. Typical multimode fiber core diameters are 50, 62.5, and 100 micrometers. However, in long cable runs (greater than 3000 feet [914.4 meters), multiple paths of light can cause signal distortion at the receiving end, resulting in an unclear and incomplete data transmission so designers now call for single mode fiber in new applications using Gigabit and beyond.

Multimode& Singlemode fiber are the five types of fiber in common use. Both fibers are 125 microns in outside diameter – a micron is one one-millionth of a meter & 125 microns is 0.005 inches- a bit larger than the typical human hair. Multimode fiber has light travelling in the core in lots of rays, called modes. It’s a bigger core (always 62.5 microns, but sometimes 50 microns) & is used with LED sources at wavelengths of 850 & 1300 nm for slower local area networks (LANs) & lasers at 850 & 1310 nm for networks jogging at gigabits per second or more. Singlemode fiber has a much smaller core, only about 9 microns, so that the light travels in one ray. It is used for telephony & CATV with laser sources at 1300 & 1550 nm. Plastic Optical Fiber (POF) is large core (about 1mm) fiber that can only be used for short, low speed networks.
Step index multimode was the first fiber design but is slow for most makes use of, due to the dispersion caused by the different path lengths of the various modes. Step index fiber is rare – only POF makes use of a step index design today.
Graded index multimode fiber makes use of variations in the composition of the glass in the core to compensate for the different path lengths of the modes. It offers hundreds of times more bandwidth than step index fiber – up to about 2 gigahertz.
Singlemode fiber shrinks the core down so small that the light can only travel in one ray. This increases the bandwidth to infinity – but it is practically limited to about 100,000 gigahertz – that is still a lot!

Multimode& Singlemode fiber are the five types of fiber in common use. Both fibers are 125 microns in outside diameter – a micron is one one-millionth of a meter & 125 microns is 0.005 inches- a bit larger than the typical human hair. Multimode fiber has light travelling in the core in lots of rays, called modes. It’s a bigger core (always 62.5 microns, but sometimes 50 microns) & is used with LED sources at wavelengths of 850 & 1300 nm for slower local area networks (LANs) & lasers at 850 & 1310 nm for networks jogging at gigabits per second or more. Singlemode fiber has a much smaller core, only about 9 microns, so that the light travels in one ray. It is used for telephony & CATV with laser sources at 1300 & 1550 nm. Plastic Optical Fiber (POF) is large core (about 1mm) fiber that can only be used for short, low speed networks.
Step index multimode was the first fiber design but is slow for most makes use of, due to the dispersion caused by the different path lengths of the various modes. Step index fiber is rare – only POF makes use of a step index design today.
Graded index multimode fiber makes use of variations in the composition of the glass in the core to compensate for the different path lengths of the modes. It offers hundreds of times more bandwidth than step index fiber – up to about 2 gigahertz.
Singlemode fiber shrinks the core down so small that the light can only travel in one ray. This increases the bandwidth to infinity – but it is practically limited to about 100,000 gigahertz – that is still a lot!

Source: fiber cable manufacturer

Fiber Optic Patch Cable Buying Guide

Fiber optic patch cords are fiber optic cables used to attach one device to another for signal routing. It compresses in the entire electric network plank and room that wall plank and the flexibility cabinet needs. And today I would like to introduce you fiber optic patch cable.

fiber optic patch cable is with the fiber optic connectors, are upgrade version of the former MPO. MTP is with better mechanical and better performance compared with MPO. Both the MTP and MPO series cables are multi fiber connectors. There are many fiber optic channels in each single connector. Due to the feature of such multi fiber, these connectors need to use with multi fiber cables, especially the ribbon multi fiber optic cables.

Typical MTP/MPO fiber optic patch cord assemblies like MTP/MPO to 8 LC, MTP/MPO to 12 MT-RJ ,etc. Both single mode and multi-mode MPO ribbon patch cables are available and they are manufactured with various color-coded housings for easy identification. MPO fiber optic patch cord adopts precision molded MT ferrules, metal guide pins and appropriate housing to provide optical fiber alignment. The push-pull design is utilized for easy mating and removal.

MTP/MPO are usually used in ribbon fiber optic patch cords or ribbon fan out multi fiber assemblies. Made by multi-fiber ribbon materials, the MPO ribbon patch cable is an ideal connecting tool for telecommunication system, testing instruments, LAN and WAN systems, FTTX, etc. The MPO ribbon patch cable features removable housing, allowing easy replacement of pin clamps, ferrule clearing and connector repolishing. Connection integrity is assured by the spring-action side latch housing. The ribbon fiber optic cables features multi fiberglass inside each single jacket ,MTP/MPO are also multi fiberglass core inside each single connector, which means, there are several fiberglass connections in each single MTP/MPO fiber optic patch cord.

Jiafu fiber optic cable manufactures a full line of fiber optic patch cables. There are LC, SC, ST, FC, E2000, E2000, DIN, D4, SMA and DIN Fiber Optic Patch Cables, which classified by connector types. In addition to standard patch cords, JiaFu also provides several kinds of specialty patch cords, such as ribbon fan-out cords, MTP / MPO patch cords, mode conditioning patch cords, armored patch cord and water proof pigtails.

Through there are so many types of fiber optic patch cords, I am going to suggest you a buying guide to helping you select the correct fiber patch cable that meets your demand.

1.Choose fiber optic connectors ST, SC, LC, FC, SC/APC, LC/APC, FC/APC, FDDI, SMA, MTP, MPO, MTP/APC, MPO/APC.

2.Choose Fiber Mode, Single Mode 9/125µm OS1, Multimode 62.5/125µm OM1, Multimode 50/125µm OM2, Multimode 50/125µm OM3 10Gigabit, Multimode 50/125µm OM4, Multimode 100/140, Multimode, 200/230.

3.Choose Fiber Cable Construction Type, Simplex fiber optic cable (A single fiber), Duplex fiber optic cable (2 fibers in a single cable, Zip Cord), Multi-Fiber cables, custom configurations, common are 4 fiber, 6fiber, 8fiber, 12 fiber, 24 fiber, 48 fiber, 72 fiber, 144 fiber, 256 fiber. Higher fiber counts are normally terminated as a MTP/MPO Trunk cables, using MTP/MPO connectors.

4.Choose Fiber Cable Diameter, In stock/Most common are 3.0mm Jacket OD. Optional are 2.0mm, 1.8mm, 1.6mm.

5.Choose Fiber Optic Cable Jacket Color. Industry Standard fiber optic cable jacket colors are. SM Yellow, MM 62.5 Orange, MM 50 OM2 Orange, MM 50 10Gb OM3 Aqua/Light Blue, Optional are Blue, Orange, Green Brown, Gray/Slate, White, Red, Black, Yellow, Purple, Pink, Aqua.

6.Choose Jacket material type, PVC jacket, Riser jacket, Plenum Jacket, Armored Jacket.

7.Choose fiber patch cord length option, normally measured in Meters. Optional lengths, CM, mm, Inches, Foot, KM, Mile.

The Advantages And Disadvantages Of The PLC Optical Power Splitter

Planar optical waveguide technology is the optical waveguide branch devices with semiconductor process, the function of the shunt on the chip, to achieve the above shunt up to 1×32 on a chip, the chip at both ends, respectively, coupled to encapsulate the input and outputend multi-channel fiber array.

PLC fiber optic splitters are used to distribute or combine optical signals, which are based on planar lightwave circuit technology and provides a low cost light distribution solution with small form factor and high reliability.

The PLC fiber Splitter contains no electronics and uses no power. They are the network elements that put the passive in Passive Optical Network and are available in a variety of split ratios, including 1:4, 1:8, and 1:16, 1:32, 1:64 and 1:128 etc.

The main advantages:

(1) wear and tear on the transmission wavelength of light is not sensitive to meet the needs the transmission of different wavelengths.

(2) spectrophotometric uniform, the signal can be assigned to the user.

(3) The compact structure, small size, can be installed directly in a variety of transfer of the box, without specially designed to stay a great deal of installation space.

(4) single device shunt channel can reach more than 32.

(5) multi-channel, low cost, points more and more large ones, the more obvious cost advantage.

The main drawback:

(1) complex device fabrication process, high technical threshold, the current chip monopolized by several foreign companies, domestic enterprises to be able to the production of large quantities of packaging and only a small few.

(2) relative to the higher cost of fused cone splitter, especially in the low-channel splitter at a disadvantage.

Source: Fiber optic cable supplier, website: http://www.jfiberoptic.com

The method to Install Fiber Optic Connectors

Fiber optic cables have been instrumental in advancing technological communication. Fiber optics today stretch across oceans and bring Internet connection to remote locations. They provide more reliable service for land-line phones than traditional wires. Although their manufacture can be complex, you can install fiber optic connections very easily. The process involves gluing bare fiber optic cable to a connector and then heating the connector to seal it.

1. Strip the plastic jacket at the end of the fiber optic cable. Optic cable ends have jackets to prevent any damage in shipping from the manufacturer. Clamp the plastic jacket, using a fiber optic stripper tool, which has a designated slot to fit the size of a fiber optic jacket. Squeeze the handles of the stripper like pliers. Pull the jacket away from the fiber optic cable.
2. Open the back chamber of the epoxy glue gun by twisting off the back cap. Insert the epoxy glue tube into the chamber and squeeze lightly. You will only need a few ounces of glue for the task. Screw the cap back on the epoxy glue gun chamber.
3. Inject epoxy glue into the fiber optic connector socket. Each fiber optic connector has two sockets on each side of it to form the connection. Insert the glue gun into the connector socket. Press and hold the trigger to insert the glue. The glue should spot should not be larger than an eye pupil.
4. Insert one fiber optic cable end into the connector sockets. Hold the cable in the socket and count to 10. Let go of the fiber optic cable and connector. Check that the cable stays in position once you let go of it.
5. Place the new fiber optic connection into an an epoxy curing oven. Turn on the oven and turn the timer knob to six minutes. Insert the fiber optic connector attached to the cable into one of the curing oven slots. Press the start button on the oven. Pull out the connector from the oven slot. Wiggle the connector end to test the stability of the connection. If it seems fragile, reinsert the connector into the oven and cook it for a few more minutes. Repeat steps three to five to seal the fiber optic connector on both sides.